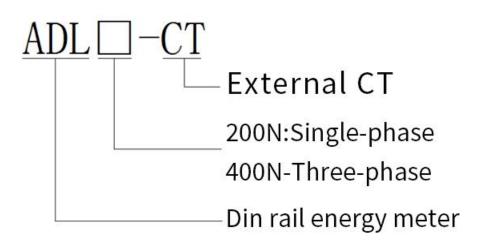


ADL Series DIN-Rail Mounted Electric Energy Meter

Installation and Operation Instructions V1.0

Acrel Electric Co., Ltd.

All rights reserved. Without the written permission of the Company, any paragraph or section of this manual shall not be extracted, copied or reproduced or distributed in any form. Otherwise, all consequences shall be borne by the violator.


The Company reserves all legal rights.

Our Company reserves the right to modify the product specifications described in this manual without further notice. Please consult your local agent for the current

specifications of this product befo1 Overview

ADL series DIN-rail mounted multifunctional electric energy meter is an intelligent instrument mainly designed for new energy power generation systems such as photovoltaic grid-connected system, micro inverter system, energy storage system, AC coupling system, etc. The product has the advantages of high precision, small volume, high respondent speed and convenient installation. The product has the features of sampling, metering and monitoring power parameters, communicating with an inverter or an energy management system (EMS), realizing the functions of preventing reverse flow, regulating power generation, charging and discharging batteries according to real-time power and accumulated electric energy, and realizing bidirectional metering and household distributed photovoltaic energy management.

2 Description of Model

3 List of Functions

	Table 1 List of Function Descriptions									
Function		Descriptions	ADL200N-CT	ADL400N-CT						
Electric	energy	Active energy metering (forward and reverse)								

metering		
	Reactive energy metering (forward and	
	reverse)	
	Split-phase energy	
	U, I	
Electric quantity measurement	P, Q, S, PF, F	
LCD display	Segmented LCD display	
Key programming	ommunication, transformation ratio and other parameters can be programmable by the key	
Pulse output	Active pulse output	
LED alarm	Operation instructions	
Communication	RS485: Modbus RTU	

4 Technical Parameters

	Item		Performance Parameters			
Model Series			ADL200N-CT ADL400N-CT			
	G	rid	Single-phase	Three-phase four-wire, three-phase three-wire, single-phase three-wire		
		Rated voltage	230	Single-phase: 240/480V Three-phase: 3×230/400V、3× 277/480V		
		Overlo ad	1.2 times rating (continuous) 2 times the rating for 1 second	d		
Measurement	Voltage	Power consum ption	<0.2VA			
		Accurac y class	Error ±0.5%			
		Input current	80A, 120A, 200A, 300A	80A, 120A, 200A, 300A, 3×80A, 3× 120A, 3×200A, 3×300A		
	Current Overloa d		1.2 times rating (continuous)			
			2 times the rating for 1 second <0.2VA			

	Power						
	consum						
	ption						
	Accurac y class	Error ±0.5%					
	Power	Active, reactive, apparent power, error $\pm 0.5\%$					
	Grid frequency	45~65Hz, error ±0.5%					
	-	≤100ms (voltage, current, power)					
	Response rate	≤1s (electrical energy)					
Metering	Electric energy	Active energy : Class B (split current transformer) /Class C (closed current transformer)					
		Reactive energy (Class 2 accuracy)					
1	Electrostatic dischar	ge immunity class III					
electromagnet ic	Electrical fast transient burst immunity class IV						
compatibility	Surge (shock) immu	nity Class IV					
	Power frequency						
	withstand voltage	Between communication and signal input, AC4kV 1min					
Security		Input and output terminals to casing $>100M\Omega$					
	Insulation						
	resistance						
	Interface and communication protocol	RS485 interface and Modbus RTU protocol					
Communicati on	Communication address range	Modbus RTU:1~ 247;					
	Baud rate	Support 1200bps-38400bps					
	Operating temperature	-40°C~+70°C					
Environment	Storage temperature	-40°C~+70°C					
	Relative humidity	≤95% (without condensation)					
	Altitude	≤3000m					

Overall Dimensions

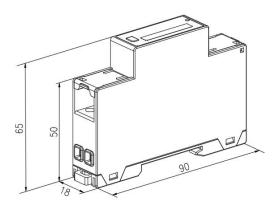


Figure 2 ADL400N-CT

6 Connection and Installation

6.1 Schematic Diagram of Voltage and Current Connection

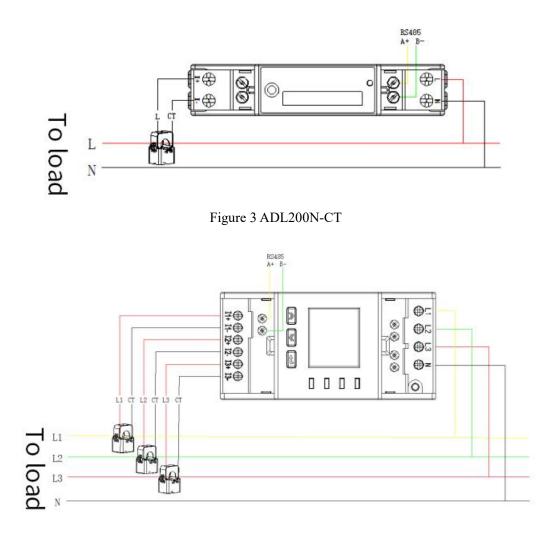


Figure 4 ADL400N-CT Three-phase Four-wire Connection Through Current Transformer

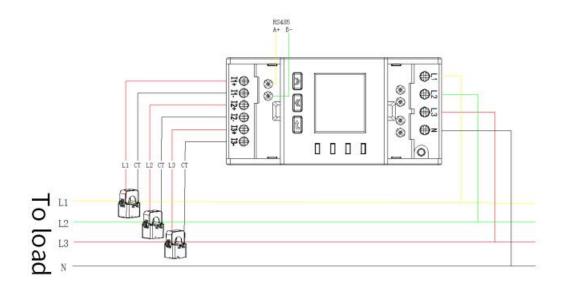


Figure 5 ADL400N-CT Three-phase Three-wire Connection Through Current Transformer (this connection method is limited to three-phase balance) (instrument is set as 3P4L)

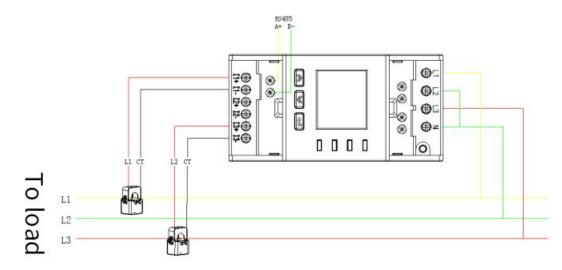


Figure 6 ADL400N-CT Three-phase Three-wire Connection Through Current Transformer (instrument is set as 3P3L)

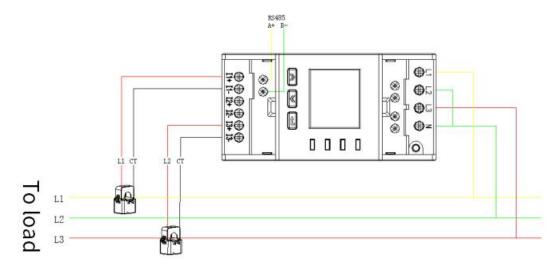


Figure 7 ADL400N-CT Single-phase Three-wire Connection Through Current Transformer

6.2 Functional Terminal

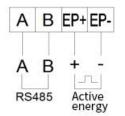


Figure 8 Communication and Pulse Connection

7 Main Functional Features

7.1 Measurement Function

It can measure total power parameters including voltage U, current I, active power P, reactive power Q, apparent power S, power factor PF and frequency. Wherein, the voltage U is reserved with 1 decimal place, the frequency F is reserved with 2 decimal places, the current I is reserved with 2 decimal places, and the power P is reserved with 3 decimal places.

For example, U = 220.1V, f = 49.98Hz, I = 1.99A, P = 0.439kW

The above electrical parameter high-speed response registers are also provided with the instrument, see Chapter 9 "Communication Instructions".

7.2 Metering Function

It can measure the current combined active electric energy, forward active electric energy, reverse active electric energy, forward reactive electric energy and reverse reactive electric energy.

8 Operation and Display

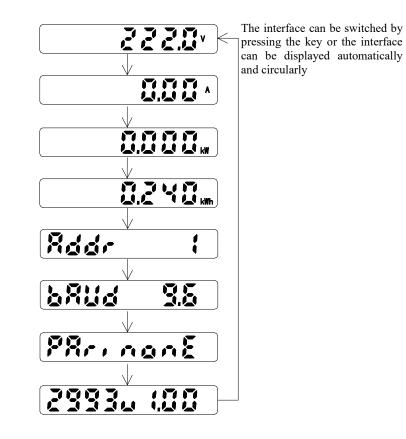

8.1 Key Function Description

Table 4 Key Function Description									
Key Icon	Key Name	Key Functions							
	Up	When switching the interface to the left, show left shift and flicker shift in programming interface							
	Down	When switching the interface to the right, show right shift and modify flicker in programming interface							
(L)	Programming confirmation	View submenu, confirm the saving setting in the programming interface							

7

8.2 Display Interface

ADL200N:

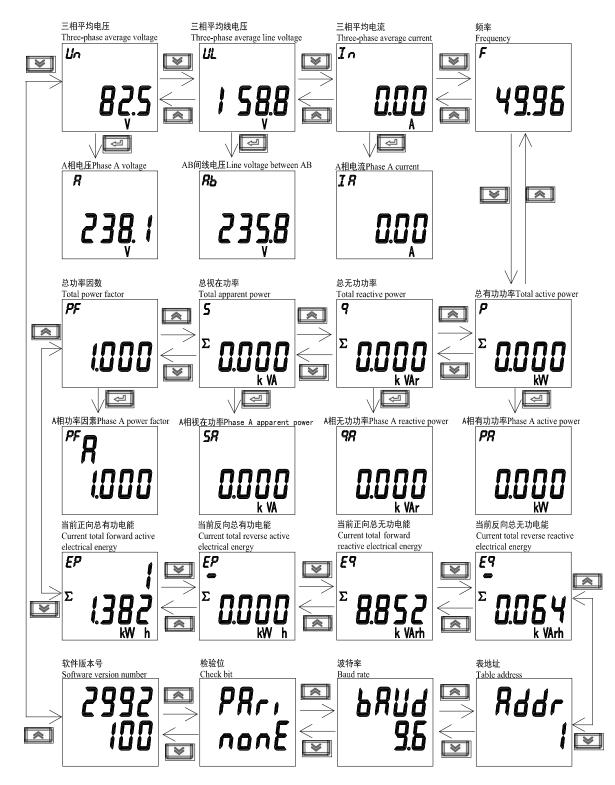
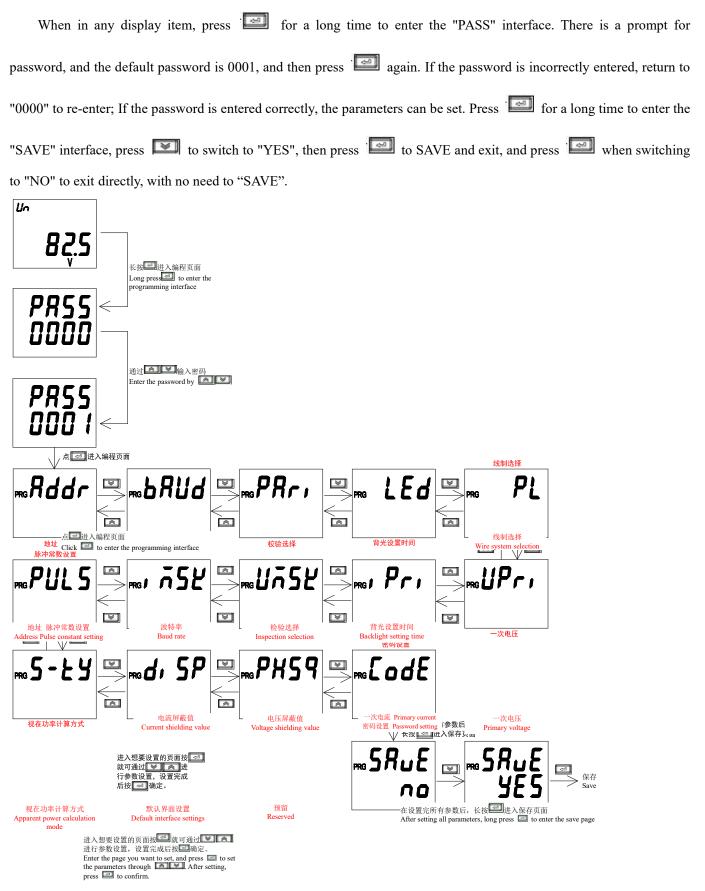



Figure 9 Description of Display Interface

Note: The above is only a part of the display interface. Phase A, B and C can be switched by Enter key (phases between AB, BC and AC are for the same reason). The display mode of other interfaces is similar to that shown in the above figure. The display meaning can be judged according to the information displayed in the interface.

8.3 Programming Interface

8.4 Settable Data Items

Symbol	Meaning	Scope		
Addr	slave address	1-247		
bAud	Baud rate	38.4: 38400 19.2: 19200 9.6: 9600 4.8: 4800		
		2.4: 2400 1.2: 1200		
PAri	parity	None, Even, Odd		
LEd	Backlight time (reserved)	0-999s		
PL	Grid	3P4L: Three-phase four-wire 3P3L:三相三线 3P3L: Three-phase three-wire		
UPri	Primary voltage	0.1-9999999.9V		
iPri	Primary current	0.01-999999.99A		
UMSK	Voltage shielding value	0-99.99%		
iMSK	Current shielding value	0-99.99%		
PULS	Pulse constant	1-99999		
S-ty	Apparent power calculation mode	RMS: RMS calculation method		
		PQS: PQS calculation method		
diSP	Power-on default interface	Auto: Automatic wheel display		
		Others: Other interfaces		
PHSq	Reserved			
CoDE	Password	1-9999		

9 Communication Instructions

The instrument RS485 communication interface supports MODBUS-RTU communication protocol. The baud rate of communication interface can be set between 1,200bps, 2,400 bps, 4,800 bps, 9,600bps, 19,200 bps and 38,400 bps, and the check bit is no check.

The RS485 communication interface of the instrument requires shielded twisted pair connection, and the layout of the whole grid should be considered when wiring: For example, the length and direction of communication cable, the position of upper computer, the matching resistance at the end of the grid, the communication converter, the scalability of the grid, the coverage of the grid, the electromagnetic interference of the environment and other factors should be considered comprehensively.

Note:

1. It shall strictly construct according to the requirements in the wiring project;

2. For instruments that do not need communication temporarily, they should be connected to RS-485 grid for diagnosis and test;

3. When connecting RS-485 cable, try to use two-color twisted pair. All 485 communication ports "A" are terminated in the same color, and "B" is terminated in another color.

4. The length of RS-485 bus (from the communication interface of the upper computer to any connected instrument terminal communication interface) shall not exceed 1,000 meters.

9.1 Address Table

Meter supports 03H command and 10H command in MODBUS-RTU protocol, in which 03H for reading multiple registers and 10H for writing multiple registers. Please check the protocol data format by yourself. The following table is the register address table of the meter:

Address	Name	R/W	Length (Bytes)	Туре	Unit	Note
1000H	slave address	R/W	1	uint16		1-247
1001H	baud rate	R/W	1	uint16		1200, 2400, 4800, 9600, 19200, 38400,
	parity	R/W	1	uint16		0: None 1: Odd 2: Even 0: 1 1stop 1: 1.5 1.5stop 2: 2 2stop
1010H	Grid	R/W	1	uint16		0:3P4L 1:3P3L
1011H	rated second voltage	R/W	1	uint16	0.1V	0.1-999. 9V
1012H	rated second current	R/W	1	uint16	0.01A	0.01-999. 99A
1015H	rated primary voltage	R/W	1	uint32	0.1V	0.1-99999.9V
1017H	rated primary current	R/W	1	uint32	0.01A	0.01-9999. 99A
101DH	Password	R/W	1	uint16		1-9999
101EH	Pulse constant	R/W	1	uint16		1-99999
101FH	Voltage shielding value	R/W	1	uint16	0.01%	
1020H	Current shielding value	R/W	1	uint16	0.01%	
1023H	Power-on default interface	R/W	1	uint16		0: Automatic wheel display Others: Other interfaces
1035H	Apparent power calculation mode	R/W	1	uint16		0: RMS 1: PQS
2000H	A-phase voltage	R	2	float	V	1.Slow register

Table 8 Communication Address Table

2002H	B-phase voltage	R	2	float	V	2.ADL200N only has A-phase
2004H	C-phase voltage	R	2	float	V	data
2006Н	AB-line voltage	R	2	float	V	-
2008H	BC-line voltage	R	2	float	V	-
200AH	CA-line voltage	R	2	float	V	-
200CH	A-phase current	R	2	float	A	-
200EH	B-phase current	R	2	float	A	-
2010H	C-phase current	R	2	float	A	
2012H	N-phase current	R	2	float	A	
2014H	A-phase active power	R	2	float	kW	
2016H	B-phase active power	R	2	float	kW	
2018H	C-phase active power	R	2	float	kW	
201AH	Total active power	R	2	float	kW	
201CH	A-phase reactive power	R	2	float	Kvar	
201EH	B-phase reactive power	R	2	float	Kvar	
2020H	C-phase reactive power	R	2	float	Kvar	
2022H	total reactive power	R	2	float	Kvar	
2024H	A-phase apparent power	R	2	float	KVA	
2026H	B-phase apparent power	R	2	float	KVA	
2028H	C-phase apparent power	R	2	float	KVA	
202AH	Total apparent power	R	2	float	KVA	
202CH	A-phase power factor	R	2	float		
202EH	B-phase power factor	R	2	float		
2030H	C-phase power factor	R	2	float		
2032Н	Total power factor	R	2	float		
2034H	Frequency	R	2	float	Hz	
2100Н	A-phase voltage	R	2	float	V	
2102Н	B-phase voltage	R	2	float	V]
2104H	C-phase voltage	R	2	float	V]
2106Н	AB-line voltage	R	2	float	V	
2108H	BC-line voltage	R	2	float	V	1.Slow register
210AH	CA-line voltage	R	2	float	V	(response rate <=100ms)
210CH	A-phase current	R	2	float	А	2.ADL200N only has A-phase
210EH	B-phase current	R	2	float	A	data
2110Н	C-phase current	R	2	float	А	
2112H	N-phase current	R	2	float	А	
2114H	A-phase active power	R	2	float	kW	
2116Н	B-phase active power	R	2	float	kW	

211011	C-phase active power	D	2	float	kW	
2118H		R				
211AH	Total active power	R	2	float	kW	
211CH	A-phase reactive power	R	2	float	Kvar	
211EH	B-phase reactive power	R	2	float	Kvar	
2120H	C-phase reactive power	R	2	float	Kvar	
2122H	total reactive power	R	2	float	Kvar	
2124H	A-phase apparent power	R	2	float	KVA	
2126H	B-phase apparent power	R	2	float	KVA	
2128H	C-phase apparent power	R	2	float	KVA	
212AH	Total apparent power	R	2	float	KVA	
212CH	A-phase power factor	R	2	float		
212EH	B-phase power factor	R	2	float		
2130H	C-phase power factor	R	2	float		
2132H	Total power factor	R	2	float		
2134H	Frequency	R	2	float	Hz	
3000H	active electric energy	R	4	double	kWh	
3004H	forward active electric energy	R	4	double	kWh	
3008H	reverse active electric energy	R	4	double	kWh	
300CH	reactive electric energy	R	4	double	kVarh	
3010H	forward reactive electric energy	R	4	double	kVarh	
3014H	reverse reactive electric energy	R	4	double	kVarh	
3018H	apparent electric energy	R	4	double	kVAh	
301CH	active electric energy of phase A	R	4	double	kWh	
3020H	forward active electric energy of phase A	R	4	double	kWh	
3024H	reverse active electric energy of phase A	R	4	double	kWh	
3028H	reactive electric energy of phase A	R	4	double	kVarh	
302CH	forward reactive electric energy of phase A	R	4	double	kVarh	
3030H	reverse reactive electric energy of phase A	R	4	double	kVarh	
3034H	active electric energy of phase B	R	4	double	kWh	
3038H	forward active electric energy of phase B	R	4	double	kWh	
303CH	reverse active electric energy of phase B	R	4	double	kWh	
3040H	reactive electric energy of phase B	R	4	double	kVarh	
3044H	forward reactive electric energy of phase B	R	4	double	kVarh	

3048H	reverse reactive electric energy of phase B	R	4	double	kVarh	
304CH	active electric energy of phase C	R	4	double	kWh	
3050H	forward active electric energy of phase C	R	4	double	kWh	
3054H	reverse active electric energy of phase C	R	4	double	kWh	
3058H	reactive electric energy of phase C	R	4	double	kVarh	
305CH	forward reactive electric energy of phase C	R	4	double	kVarh	
3060H	reverse reactive electric energy of phase C	R	4	double	kVarh	